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Efficient syntheses of streptocarpone and (±)-a-dunnione
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Abstract—An efficient divergent synthesis of both streptocarpone and racemic a-dunnione from lawsone are described. A one-pot,
formal [3+2] cyclization to form a furanonaphthoquinone directly provided a common intermediate.
� 2007 Elsevier Ltd. All rights reserved.
We have been interested in the chemistry of naphthoqui-
nones for some time due to their interesting structure
and activities.1 A series of related naphthoquinone pig-
ments (streptocarpone, a-dunnione, dunniol and dunni-
one) from Streptocarpus dunnii (Mast.)2,3 have been
isolated and characterized to contain an isoprenylated
naphthoquinone structure (Fig. 1). The furanonaphtho-
quinone a-dunnione has also been isolated from Strep-
tocarpus pole-euonsii (Gesneriaceae),4 and from the
Scrophulariaceae plants Calceolaria andina,5 and C.
integrifolia.6 Recently, hydroxylated derivatives of a-
dunnione have been isolated from Chirita eburnea
Hance.7

Most of these compounds have very potent insecticidal
and fungicidal activity8 and they all probably have anti-
oxidant activity.7 However, the activity of streptocar-
pone is not known, even though a quaternary carbon
on the side chain connected to a naphthoquinone
nucleus was found to be important for some activity.
Although the natural compounds are available, a syn-
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Figure 1. Prenylated naphthoquinones.
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thetic preparation would allow formation of the desired
compound in large quantities. Furthermore, chemical
construction would allow the formation of other ana-
logs which may be more effective in certain aspects
(e.g., solubility).

All previous syntheses to form a-dunnione derive from
dunniol.9 Acidic cyclization of dunniol 3 forms racemic
1,2-naphthoquinone 4 which is isomerized in base to a-
dunnione 2 (Scheme 1). This synthesis is inefficient and
depends on easy access to dunniol, which is not commer-
cially available. To the best of our knowledge, the total
synthesis of streptocarpone has not been previously
reported.

We were curious if the biosynthetic route (and our syn-
thetic approach) to these compounds could be traced to
a common intermediate enol ether (Scheme 2). Hydroly-
sis of ether 5 would provide streptocarpone 1, whereas
reduction of the exocyclic alkene directly provides a-
dunnione 2. Furthermore, we envisioned the direct
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Scheme 2. Retrosynthetic analysis.
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Scheme 1. Previous synthesis of a-dunnione.
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Scheme 4. Hydrolysis of enol ether.
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Scheme 5. Attempted and successful hydrogenation of enol ether.
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alkylation of the commercially available 2-hydroxy-1,4-
naphthoquinone (lawsone, 6) at the C-3 as the most effi-
cient route to this common intermediate.

We began our synthesis with the regioselective alkyl-
ation of lawsone. According to the literature precedent,
phenols10 and carboxylic acids11 are alkylated at the
oxygen with tertiary propargylic halides. However, we
did find one example of C-alkylation with ethyl cya-
noacetate.12 Since lawsone can be considered as the sta-
ble enol form of a b-diketone, we anticipated that the
copper catalyzed reaction would be regioselective. As
we discovered, the major product produced between
lawsone and 3-chloro-3-methyl-1-butyne 7 was identi-
fied as enol ether 5 (Scheme 3). A one-pot, formal
[3+2] cyclization to form the furanonaphthoquinone di-
rectly provided our common intermediate.

With a ready supply of dehydro-a-dunnione 5, we first
investigated the formation of streptocarpone 1 (Scheme
4). Stirring a suspension of furanonaphthoquinone 5 in
hot aqueous sulfuric acid until the compound dissolves
and then cooling and filtering the yellow product gave
a good yield of pure streptocarpone. The melting point
and NMR spectra correspond to the natural product.3

The reduction of the exocyclic double bond of 5 should
be straightforward. However, we were surprised to find
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Scheme 3. Selective alkylation of lawsone.
that TLC analysis of the hydrogenation reaction of 5 in
MeOH using Pd/C with pressurized H2 gas showed no
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Scheme 6. Proposed mechanism of the formation of furano-
naphthoquinone.
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change over several days or weeks. NMR analysis of the
crude reaction mixture following a rapid work-up
showed the reason: the compound readily forms methyl
acetal 8, blocking the hydrogenation. The reaction is
reversible and the acetal on a TLC plate (or during
work-up) reverts to the starting material. Changing the
solvent to t-butanol and the catalyst to PtO2 (Adam’s
catalyst) allowed the hydrogenation to take place rap-
idly at room temperature under balloon pressure of H2

(Scheme 5). The physical and spectroscopic properties
of synthetically prepared racemic 2 match the literature
data published.3

The mechanism of the interesting transformation of law-
sone to enol ether 5 is still under investigation. We sug-
gest that under the conditions of the coupling, a
zwitterion-vinyl carbene intermediate is formed (Scheme
6).13 This species couples with lawsone at C-3. Proton
transfer (intramolecular or intermolecular) provides
the terminal alkyne, p-activated by the copper ions pres-
ent. Cyclization by the nucleophilic oxygen at C-2 on the
activated alkyne thus forms the exocyclic enol ‘vinylcup-
rate’, which is protonated in situ or during the aqueous
work-up. The formation of a carbocyclic 5-membered
ring by intramolecular cuprate addition to an alkyne is
known;14 this would be the first oxygen variation of
the process. Many questions are still unanswered by this
mechanism: Why is the reaction selective for alkylation
C-3? Why is the O-2 most nucleophilic and not O-4
(dehydrodunnione 9 is a known natural product,3

whereas dehydro-a-dunnione 5 is an apparently new
compound)? We hope to address these mechanistic con-
cerns by forming the uncyclized C-alkylated intermedi-
ate by another route and submitting this compound to
the conditions of the reaction to see if we have a viable
intermediate.

In summary, we have presented a very efficient and eas-
ily accessible synthesis of streptocarpone and (±)-a-dun-
nione. Of note is the unprecedented transformation of
lawsone 6 into furano enol ether 5 by copper catalyzed
propargylation. The reactions have not been optimized
and are sure to provide higher yields on a larger scale.
Because the two products are produced from a common
intermediate, which is formed by the coupling of two
common substrates, the synthesis is both convergent
and divergent and allows flexibility to form various
congeners that vary, for example, by replacing different
groups at the quaternary center. We are continuing to
investigate the mechanistic aspects of the cyclization
and the biological properties of these compounds which
will be reported in separate articles.
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